منابع مشابه
Splitting NP-Complete Sets
We show that a set is m-autoreducible if and only if it is m-mitotic. This solves a long standing open question in a surprising way. As a consequence of this unconditional result and recent work by Glaßer et al., complete sets for all of the following complexity classes are m-mitotic: NP, coNP, ⊕P, PSPACE, and NEXP, as well as all levels of PH, MODPH, and the Boolean hierarchy over NP. In the c...
متن کاملSplitting Number is NP-complete
We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k 0, such that a planar graph can be obtained from G by k splitting operations. Such operation replaces a vertex v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v e...
متن کاملAutoreducibility of NP-Complete Sets
We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: • For every k ≥ 2, there is a k-T-complete set for NP that is k-T autoreducible, but is not k-tt autoreducible or (k − 1)-T autoreducible. • For every k ≥ 3, there is a k-tt-complete set for NP that is k-tt autor...
متن کاملComparing Reductions to NP-Complete Sets
Under the assumption that NP does not have p-measure 0, we investigate reductions to NP-complete sets and prove the following: 1. Adaptive reductions are more powerful than nonadaptive reductions: there is a problem that is Turing-complete for NP but not truth-table-complete. 2. Strong nondeterministic reductions are more powerful than deterministic reductions: there is a problem that is SNP-co...
متن کاملOverloading is NP - complete
We show that overloading is NP-complete. This solves exercise 6.25 in the 1986 version of the Dragon book.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 2008
ISSN: 0097-5397,1095-7111
DOI: 10.1137/060673886